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Estimation of stride‑by‑stride 
spatial gait parameters using 
inertial measurement unit attached 
to the shank with inverted 
pendulum model
Yufeng Mao1, Taiki Ogata1*, Hiroki Ora1, Naoto Tanaka2 & Yoshihiro Miyake1

Inertial measurement unit (IMU)-based gait analysis systems have become popular in clinical 
environments because of their low cost and quantitative measurement capability. When a shank is 
selected as the IMU mounting position, an inverted pendulum model (IPM) can accurately estimate 
its spatial gait parameters. However, the stride-by-stride estimation of gait parameters using one 
IMU on each shank and the IPMs has not been validated. This study validated a spatial gait parameter 
estimation method using a shank-based IMU system. Spatial parameters were estimated via the 
double integration of the linear acceleration transformed by the IMU orientation information. To 
reduce the integral drift error, an IPM, applied with a linear error model, was introduced at the mid-
stance to estimate the update velocity. the gait data of 16 healthy participants that walked normally 
and slowly were used. The results were validated by comparison with those extracted from an optical 
motion-capture system; the results showed strong correlation ( r > 0.9 ) and good agreement with the 
gait metrics (stride length, stride velocity, and shank vertical displacement). In addition, the biases 
of the stride length and stride velocity extracted using the motion capture system were smaller in the 
IPM than those in the previous method using the zero-velocity-update. The error variabilities of the 
gait metrics were smaller in the IPM than those in the previous method. These results indicated that 
the reconstructed shank trajectory achieved a greater accuracy and precision than that of previous 
methods. This was attributed to the IPM, which demonstrates that shank-based IMU systems with 
IPMs can accurately reflect many spatial gait parameters including stride velocity.

In recent years, many studies have focused on the development of an inertial measurement unit (IMU) equipped 
with an accelerometer, gyroscope sensor, and magnetometer for a gait analysis system that can provide quantita-
tive gait parameters such as stride length, velocity, gait cycle. Compared to the golden standard for gait analysis—a 
motion capture system and instrumented walkways—the IMU-based system is cost effective, lightweight, and 
versatile, which are suitable characteristics for clinical and residential applications1. In particular, the inverted 
pendulum model (IPM) is considered useful for estimating spatial gait parameters such as stride length from 
acceleration and angular velocities measured by the IMU2,3. However, the step-by-step accuracy of the spatial 
parameters estimated using the IMU data and IPM model has not been validated thus far.

Kinematics information in the gait cycle is a component of gait considered in clinical gait analyses4. For 
example, variability in stride length can be used to assess the progression of Parkinson’s disease (PD)5, and 
stride velocity can be used to predict the risk of adverse events in the elderly6. To estimate spatial gait parameters 
from acceleration and angular velocities measured by the IMU, the previous studies implemented a segmenta-
tion algorithm7–10. Integral computations for spatial parameter estimation are reset at each segmentation point, 
which reduces errors caused by the measurement noise. The implementation details of these algorithms depend 
on the attachment position of the IMU because different positions produce different signal characteristics and 
different assumptions need to be considered to improve estimation accuracy. A wide selection of attachment 
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positions for the IMUs involved bilateral shanks7,11, bilateral insteps12–15, and bilateral heels16,17. In terms of 
ensuring attachment stability, the shank position seems to be a good choice because the soft tissue of the lower 
shank has less movement than that at the other positions18. Further, when the IMU is fixed to the heel or instep 
position on footwear, the moving artifact of the footwear affects the estimation accuracy. However, compared 
to the heel or instep attachment positions closer to the ground, the shank position has room for improvement 
in terms of estimating spatial parameters such as stride length and stride velocity. The shank-based method can 
be used to obtain reliable gait parameters and visualise the 3D-trajectory of each stride19,20. In a previous study, 
zero-velocity-update (ZUPT) was introduced, which re-initialises the integrated velocity to zero at the segmenta-
tion point (mid-stance). However, the shank possesses a small velocity at the mid-stance2, which results in the 
error being included in the estimated spatial gait parameters. Instead of assuming the velocity at the mid-stance 
to be zero, the inverted pendulum model (IPM)2,3, which considers the IMU movement at the mid-stance as 
a circular motion in the sagittal plane and estimates the velocity using angular velocity has the potential to 
provide a more accurate result. In fact, Wu et al. showed that the total error of the walking distance estimated 
using shank-mounted IMUs and an IPM was smaller than that estimated using the same IMUs and a ZUPT19.

However, it remains unclear if stride-by-stride estimation using shank-mounted IMUs and the IPM is superior 
to that using ZUPT. As mentioned above, some variability in the spatial gait parameters is important for the gait 
assessment of people with gait disorders, and to investigate such variability in gait parameters, stride-by-stride 
estimation of gait parameters is necessary. This study aimed to validate the stride-by-stride estimation method 
for spatial gait parameters using shank-mounted IMUs and the IPM. In addition, we investigated whether the 
stride-by-stride estimation of the spatial gait parameters using the IPM was superior to that using the ZUPT. 
A modified IPM that considered the posture of the IMU for shank trajectory estimation was implemented. For 
evaluating the proposed method, we performed a concurrent validation experiment using an optical motion 
capture system with a high spatial resolution. Next, we compared the proposed method to a ZUPT method to 
investigate whether the IPM improved the accuracy of the stride-by-stride estimation. We used a previously 
reported method20 as the ZUPT method because this method had been evaluated for stride-by-stride spatial 
gait parameters.

Results
All 16 participants completed both tasks; the data for the normal speed task of one of the participants could not 
be analysed because of synchronisation issues (the motion capture system did not capture the stamp event), and 
therefore, it was excluded. The motion capture system suffered from loss of data because of the reflective mark-
ers; these invalid data were excluded, and a total of 695 strides were extracted from the motion capture system, 
with 283 strides for the normal speed task and 412 strides for the slower speed task.

First, we validated the proposed method compared to the results from the motion capture system. Fig-
ure 1 shows scatter plots for the stride length, stride velocity, and shank vertical displacement between the data 
extracted from the proposed method and those obtained from the motion capture system. The stride length and 
velocity decreased when the participants walked slowly. Pearson’s correlation coefficient and the error distribution 
are summarised in Table 1. All parameters achieve high correlation with Pearson correlation coefficient r > 0.90. 
Thus, the proposed method estimated the parameters appropriately.

Second, we investigated whether the proposed method estimated the parameters more accurately than the 
previous method. The Bland–Altman plots for the parameters estimated using the proposed method and a previ-
ous method are shown in Fig. 2. The biases of stride length, stride velocity, and shank vertical displacement for 
the proposed and previous methods were 0.006 m and −0.059 m, 0.007 m/s and −0.047 m/s, and −0.010 m and 
−0.009  m, respectively. The stride length and stride velocity estimated using the proposed method achieved a 
very small bias compared with those estimated using the previous method. The 95% confidence intervals of stride 
length, stride velocity, and shank vertical displacement for the proposed and previous methods were 0.099 m 

Figure 1.   Scatter plots of (a) stride length, (b) stride velocity, and (c) shank vertical displacement extracted 
from the proposed method and motion capture system. Each dot indicates the value in one stride. The black line 
shows the best fit line.
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and 0.115 m, 0.095 m/s and 0.137 m/s, and 0.026 m and 0.030 m, respectively. Thus, the error variability for all 
parameters estimated using the proposed method was smaller than that using the previous method.

Discussion
This study aimed to validate stride-by-stride gait estimation using IMUs attached to the shank and an IPM. The 
parameters were extracted from the walking data of 16 participants, and they were compared with those obtained 
using a motion capture system as reference. The results showed high correlation and good agreement between 
the two systems for stride length, stride velocity, and shank vertical displacement, which verifies the technical 
effectiveness of the proposed method.

In terms of the Bland–Altman analysis, the proposed method achieved a −0.044 to 0.057 m limit of agreement 
for the stride length, which is comparable to that achieved using the heel- or instep-based method14,15,17,21. The 
relative absolute error of the shank vertical displacement is slightly worse than other parameters with an overall 
value of 6.5% (Table 1). When comparing the spatial parameters in the forward (stride length) and vertical direc-
tions (shank vertical displacement), the magnitude of the error tended to be different. The value of movement in 
the vertical direction was smaller than that in the forward direction, and therefore, the shank vertical displace-
ment would be susceptible to noise. However, the shank vertical displacement still achieved good agreement 
with a mean of -0.010 m and the limit of agreement of −0.023  m and 0.003 m.

Compared to the previous method20 as shown in Fig. 2, the proposed method achieved a considerably smaller 
bias with a stride length of 0.005 m and a stride velocity of 0.007 m/s. This is because the modified IPM used in 
this study compensates the velocity estimation error at each segmentation point. Further, this result demonstrated 
that the IPM achieves good performance in terms of 3D-trajectory estimation. The previous IPM required an 
event assumption that the shank tilt angle in the sagittal plane is zero; however, this was difficult to guarantee22. 
The the proposed method combines orientation estimation that computes the update velocity in three dimensions 
and does not require an event assumption. The estimated shank vertical displacement from both methods still 
have a close bias, which indicates that the vertical direction has a very small velocity at the segmentation point 
and does not gain considerable benefit from the IPM. The bias of the shank vertical displacement that appears 
in both methods can be affected by IMU calibration where the linear acceleration in the vertical direction is 
calculated by subtracting the gravity component23,24.

The above results indicates that the IPM contributes to spatial gait parameter estimation with sufficient accu-
racy compared to the motion-capture system. The limitation of the current study is that it does not use patient 
data or elderly data. However, although measurement targets can walk such that the sole of their foot contacts 
the ground and the feasibility of the pendulum model for abnormal gait assessed in a prior research2 indicates 
that the proposed method can be applied to patients or the elderly, this still needs to be proved. In particular, 
the IPM may be strict in estimating the gait parameters of people with severe gait disorders. For example, the 
IPM may work well when people limp or shuffle because their gait trajectories would not fit to the pendulum 
model. Future research needs to address the gait events detection problem for abnormal gait because it is the 
prerequisite for most segmentation-algorithm-based gait trajectory estimation methods. However, the IPM 
would be useful in distinguishing people with slight gait disorders from healthy people. For example, some 
studies have attempted to classify early PD patients and healthy elders using gait parameters to develop an early 
diagnosis method for PD patients25,26. Because the gait of early PD patients is similar to that of healthy people, 
it is necessary to estimate the walking trajectory as accurately as possible. Therefore, the IPM would work well 
to classify early PD patients and healthy elders.

For data processing, we did not use high- or low-pass filters for the IMU data because we initially considered 
that the proposed method could almost eliminate the drift. In fact, the proposed method showed high accuracy 
in trajectory estimation. However, such filters would theoretically improve the estimation accuracy. Some studies 
developed a filtering method for IMU data in gait trajectory estimation23,24. In the future, such filters would be 
applied or added to the proposed method.

Table 1.   Pearson’s correlation coefficient (r), the mean (SD) of error (E), absolute error (|E|), and relative 
absolute errors ( |E|% ) for the gait parameters extracted from the proposed method and motion capture system.

Parameters r E |E| |E|%

Stride length (m)

Normal 0.98 0.012 (0.026) 0.024 (0.016) 1.7% (1.1%)

Slow 0.99 0.002 (0.025) 0.020 (0.015) 1.6% (1.2%)

Overall 1.00 0.007 (0.025) 0.020 (0.016) 1.9% (1.4%)

Shank vertical displacement (m)

Normal 0.93 − 0.011 (0.007) 0.011 (0.006) 6.9% (3.9%)

Slow 0.91 − 0.009 (0.007) 0.009 (0.006) 6.3% (4.0%)

Overall 0.92 − 0.010 (0.007) 0.010 (0.006) 6.5% (4.0%)

Stride velocity (m/s)

Normal 0.98 0.014 (0.028) 0.026 (0.018) 2.0% (1.4%)

Slow 0.99 0.002 (0.021) 0.016 (0.013) 1.8% (1.4%)

Overall 1.00 0.007 (0.025) 0.020 (0.016) 1.9% (1.4%)
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Figure 2.   Bland–Altman plot for stride length, stride velocity, and shank vertical displacement estimated by (a) 
the proposed method and (b) the previous method20 for 283 strides under the normal speed task ( ◦ ) and 412 
strides under the slower speed task (+). The Bland–Altman plot provides information about the mean difference, 
which indicates the bias between two systems, and the 95% confidence interval, which is known as the limit of 
agreement (LOA) that shows the difference between the values measured by two systems for most individuals27.
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Although we could not discuss gender-related difference for the limitation number of the participants, it 
is possible to increase the accuracy of trajectory estimation using gender differences in the gait. In fact, some 
studies investigated gender differences in the gait28–30. For example, women’s foot progression angle tends to be 
more internally rotated than those of men in the stance phase28. This difference can affect the trajectory and 
estimation accuracy of the trajectory.

Conclusions
In this study, an IMU-based stride-by-stride gait analysis method was validated with an optical motion capture 
system. The method explored the possibility of using the IPM to analyse the shank trajectory that estimates the 
stride length, stride velocity, and shank vertical displacement. The accuracy of each parameter estimated by the 
IPM method was compared with that estimated using a previous method based on the ZUPT. Using the proposed 
method, the average error of the extracted stride length achieved a small bias of 0.006 m. Overall, this study is 
a step toward the development of a shank-based gait analysis system that will serve as a convenient objective 
measurement tool for future clinical diagnoses.

Methods
System setups.  In this study, two IMUs (accelerometer and gyroscope) were mounted on the shanks on 
both sides, immediately above the malleolus at a distance of r. The attachment position and coordinate system of 
the IMUs are shown in Fig. 3. The x, y, and z axes represented inferior/superior, posterior/anterior, and medial/
lateral directions, respectively.

Gait event detection and data segmentation via angular velocity.  Heel-strike (HS) and toe-off 
(TO) events were first detected based on the angular velocity in the sagittal plane ωz

7 (Fig. 4). The search regions 
for HS and TO events were defined based on the shank tilt angle in the sagittal plane θz20 calculated using the 
integration of ωz . Then, each HS was defined as the first peak that appears after the local maximum of θz (shank 

Figure 3.   Configuration of the IMUs. Two IMUs are attached to the shank position right above the malleolus 
at a distance of r. The axes x, y, z are the coordinate system of the IMU, where the z-axis is perpendicular to the 
sagittal plane formed by the y and z-axes.

Figure 4.   Samples of angular velocity, angle in the sagittal plane, and gait events. The heel-strike (HS) and toe-
off (TO) events were defected from the angular velocity.
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max forward; SMF) and each TO was defined as the minimum of ωz that appears before the local minimum of θz 
(shank max backward; SMB). After the HS and TO in each gait cycle were detected, the data were segmented by 
the mid-stance (MS), which is defined as the maximum point of ωz between HS and TO11.

Orientation estimation from acceleration and angular velocity.  The quaternion system was intro-
duced to describe orientation information in this study. We use superscripts to represent the coordinate frame 
wherein a variable is located and the rotation direction of a quaternion. Superscripts S and E represent the 
IMU coordinate frame and the laboratory coordinate frame, respectively. Further, we use (k) to represent the 
kth sample of an instantaneous variable and (i) to represent a variable in the ith gait cycle. For example, qSE(k) 
represents the instantaneous quaternion that can convert a vector from frame S to frame E. In addition, ms(i) is 
the mid-stance event in the ith gait cycle.

At each ms(i), we assumed that the IMU is reset and the accelerometer only detects gravity. Therefore, the rota-
tion quaternion qSE(k) at ms(i) is computed using the accelerometer output aS(k) and gravity gE =

[

1 0 0
]T as

with

where ∥ ∥ represents the L2-norm, · is the dot product, and × is the cross product.
The remaining rotation quaternions in each segment were computed via the integration of angular velocity 

ωS(k) for each sample as

with

where ⊗ denotes the quaternion product and �t represents the sampling interval.
Using qSE(k), we can transform the measured acceleration into the laboratory coordinate frame as

where (qSE(k))∗ is the conjugate of qSE(k).
Finally, the linear acceleration ãE(k) is obtained by removing the gravitational component from aE(k).

Velocity estimation and drift removal via inverted pendulum model.  After linear acceleration is 
determined, the velocity vE(k) is computed using the trapezoidal integral with the sampling interval as

However, this integral result contains significant drift. This drift occurs from the accumulation of sensor 
errors such as bias in the gyroscope and jitter in the accelerometer. To solve this problem, a modified IPM was 
introduced in this phase. At each ms(i), we assume the movement of the shank to be rotational motion with the 
malleolus as a fulcrum (Fig. 5). Thus, the velocity at ms(i) can be calculated as the cross product between the 
angular velocity in the laboratory coordinate frame ωE(k) and the position r(k) of the IMU

with
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We assume that aS(k) contains the gravitational component only at ms(i), and therefore, r(k) is defined as the 
vector in the aS(k) direction with a magnitude of the distance between the IMU and the malleolus r as

If the IMU sensor is attached at a certain distance from the ankle, r is known in advance and there is no need 
to measure it each time.

Then, we model the drift error e(k) as a linear variation31 that occurs over time with a constant slope and 
intercept in each segment as

where α(i) and β(i) are the slope and the intercept of the error model in the ith gait cycle, respectively.
Using the velocity v̆E(k) estimated from the IPM, α(i) and β(i) are computed as

Finally, the drift error is removed from velocity vE(k) by subtracting the modelled error, and the correction 
result ṽE(k) is obtained as

Trajectory estimation and coordinate frame transformation.  First, the trajectory pE(k) is esti-
mated by the direct integration of the corrected velocity ṽE(k) via a trapezoidal rule first as

Then, a new coordinate frame P is introduced for visualising the stride trajectory and computing the spatial 
parameters. In frame P, the y axis direction is aligned to the stride forward direction and the x axis is aligned 
along the vertical direction. The rotation matrix REP(i) between the frames P and E is computed by solving the 
equation

where

and each column of matrix PE(i) =
[

xE(i) yE(i) zE(i)
]

 is defined as

(11)ωE(k) = qSE(k)⊗ ωS(k)⊗ (qSE(k))∗.

(12)r(k) = r
aS(k)

∥

∥aS(k)
∥

∥

, k = ms(i).

(13)e(k) = α(i)(k −ms(i))+ β(i), k ∈ [ms(i),ms(i + 1)]

(14)α(i) =
vE(ms(i + 1))− v̆E(ms(i + 1))− vE(ms(i))+ v̆E(ms(i))

ms(i + 1)−ms(i)

(15)β(i) = vE(ms(i))− v̆E(ms(i))

(16)ṽE(k) = vE(k)− α(i)(k −ms(i))− β(i), k ∈ [ms(i),ms(i + 1)]

(17)pE(k) = pE(k − 1)+
ṽE(k)+ ṽE(k − 1)

2
�t

(18)I3 = REP(i) · PE(i)

(19)I3 =

[

1 0 0
0 1 0
0 0 1

]

Figure 5.   Motion of the IMU at the mid-stance can be modelled as a rotational motion in a three-dimensional 
space. The position vector r and angular velocity in laboratory coordinate frame ωE were computed from the 
estimated orientation of IMU. Thus, the update velocity v̆E can be recovered as the tangential velocity associated 
with r and ωE .
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The final estimate trajectory pP(k) in each gait cycle is transformed using the rotation matrix applied to pE(k):

The example of the stride before and after the transformation is shown in Fig. 6.

Spatial gait parameter computation.  The definitions of stride length and shank vertical displacement 
are shown in Fig. 6. Stride length during one gait cycle is computed as the displacement in the y direction pPy (k) 
between two successive mid-stance events.

Shank vertical displacement is calculated as the maximum displacement value in the x direction pPx (k).

Stride velocity is defined as the division of the stride length and stride duration.

with

Evaluation experiment
In this study, six females and ten males (age: 23± 2 ; height: 164± 7 cm ) participated in the concurrent valida-
tion experiment. This experiment was conducted in accordance with the Declaration of Helsinki and approved 
by the ethics committee of the Tokyo Institute of Technology. Written informed consent was obtained from all 
participants.

(20)yE(i) =
pE(ms(i + 1))− pE(ms(i))

∥

∥pE(ms(i + 1))− pE(ms(i))
∥

∥

(21)zE(i) =

[

1 0 0
]T

× yE(i)
∥

∥

∥

[

1 0 0
]T

× yE(i)
∥

∥

∥

(22)xE(i) = yE(i)× zE(i)

(23)pP(k) = REP(i) · pE(k), k ∈ [ms(i),ms(i + 1))

(24)Stride length(i) = pPy (ms(i + 1))− pPy (ms(i))

(25)Shank vertical displacement(i) = max pPx (k), k ∈ (ms(i),ms(i + 1))

(26)Stride velocity(i) =
Stride length(i)

Stride duration(i)

(27)Stride duration(i) = hs(i + 1)− hs(i)

Figure 6.   Typical ankle trajectory before (in frame E) and after transformation (in frame P). This 
transformation allows visualising the trajectory and computing the spatial gait parameters. Stride length is 
defined as the displacement in the anterior-posterior direction; shank vertical displacement is defined as the 
maximum displacement in the superior-inferior direction.
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The participants completed a 4× 10 m walking tasks at two different self-selected walking speeds: normal 
and a slower speed, in a fixed order. In the future, we assume elders or patients with gait disorder such as PD 
patients as the target for our system. Aging and disorders decrease people’s gait velocity32,33, and therefore, we 
employed the slow walking condition. The participants conducted one trial under each condition. Two IMUs 
(TSND121, ATR-Promotions, Japan) with features of an accelerometer ( ±8 g ) and a gyroscope ( ±1000◦/s ) were 
used to implement the proposed method. The size of the TSND121 is 37 mm× 46 mm× 12 mm and the weight 
is approximately 22 g . Each IMU was placed into a housing pocket with an elastic band, and it was attached to 
the shank in the position 0.03 cm above the malleolus.

A motion capture system with 12 cameras (VENUS3D, NOBBYTECH, Japan) and optical motion capture 
software (Motive:Tracker, NaturalPoint, Inc.) was used as the reference system. The motion capture system was 
calibrated well to ensure that the overall displacement error was under 1 mm . The sampling frequencies were set 
to 100 Hz for both the IMU and the motion capture system. Before the start of the experiment, participants were 
asked to stamp their left and right foot once to synchronise events between the IMUs and the motion-capture 
system. We used Python (Python Software Foundation) for data processing and analysis.

For the statistical analysis, we compute the difference in the stride-by-stride gait parameter results extracted 
using the IMU and the motion-capture system as the error for the proposed method. We computed the mean 
and standard deviation of the error, the absolute error, and the relative absolute error for each parameter. Further, 
Bland–Altman analysis34 was introduced to assess the agreement between the IMU and the motion-capture 
measurement system for the previous20 and proposed methods.

One participants’ data in normal speed was excluded because the motion capture data cannot be synchro-
nized with the IMU data. Finally, 15 normal speed data and 16 slower speed data were analyzed. After removing 
invalid data resulting from the reflective markers loss in the invisible area, a total of 722 strides were extracted 
from the motion capture system, with 289 strides (19.27 strides per one participant) in the normal speed task 
and 433 strides (27.06 strides per one participant) from the slower speed task. The number of strides analyzed 
is not less than that measured in previous studies13,14,20. All strides can be found in the IMU estimation results 
without missing detection. Thus, we analyzed these data to validate the proposed method.
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